Use of continuous lactose fermentation for ethanol production by Kluveromyces marxianus for verification and extension of a biochemically structured model.
نویسندگان
چکیده
A biochemically structured model has been developed to describe the continuous fermentation of lactose to ethanol by Kluveromyces marxianus and allowed metabolic coefficients to be determined. Anaerobic lactose-limited chemostat fermentations at different dilution rates (0.02-0.35h(-1)) were performed. Species specific rates of consumption/formation, as well as yield coefficients were determined. Ethanol yield (0.655 C-mol ethanol(∗)C-mol lactose(-1)) was as high as 98% of theoretical. The modeling procedure allowed calculation of maintenance coefficients for lactose consumption and ethanol production of m(s)=0.6029 and m(e)=0.4218 (C-mol) and (C-molh)(-1), respectively. True yield coefficients for biomass, ethanol and glycerol production were calculated to be Y(true)(sx)=0.114, Y(true)(ex)=0.192 and Y(sg)=2.250 (C-mol) and (C-mol)(-1), respectively. Model calculated maintenance and true yield coefficients agreed very closely with those determined by regressions of the experimental data. The model developed provides a solid basis for the rational design of optimised fermentation of cheese whey.
منابع مشابه
Kinetics of Bioethanol Production from Lactose Converted by Kluyveromyces Marxianus
A kinetic model for ethanol fermentation of lactose using yeast Kluyveromyces marxianus DSMZ 5422 is proposed. The model consists of a set of differential equations which account for substrate consumption, ethanol production and biomass production. In the model, it is assumed that alcoholic fermentation is inhibited by ethanol itself and that a different metabolic pathway is set at certain etha...
متن کاملProcess optimization for ethanol production from very high gravity (VHG) finger millet medium using response surface methodology
The Box-Wilson central composite design (CCD) based on response surface methodology (RSM) was used for ethanol fermentation using very high gravity (VHG) finger millet hydrolysate. Optimized process variables were namely, concentrations of yeast extract, magnesium sulphate and pH of the medium. High gravity mashes (>300 g dissolved solids per liter) were prepared by a thermo-stable α-amylase, f...
متن کاملHigh-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042.
We demonstrate herein the ability of Kluyveromyces marxianus to be an efficient ethanol producer and host for expressing heterologous proteins as an alternative to Saccharomyces cerevisiae. Growth and ethanol production by strains of K. marxianus and S. cerevisiae were compared under the same conditions. K. marxianus DMKU3-1042 was found to be the most suitable strain for high-temperature growt...
متن کاملContinuous ethanol fermentation of lactose by a recombinant flocculating Saccharomyces cerevisiae strain.
Alcohol fermentation of lactose was investigated using a recombinant flocculating Saccharomyces cerevisiae, expressing the LAC4 (coding for beta-galactosidase) and LAC12 (coding for lactose permease) genes of Kluyveromyces marxianus. Data on yeast fermentation and growth on a medium containing lactose as the sole carbon source are presented. In the range of studied lactose concentrations, total...
متن کاملNUTRIENT BALANCE AND METABOLIC ANALYSIS IN A Kluyveromyces marxianus FERMENTATION WITH LACTOSE-ADDED WHEY
Addition of lactose on whey to produce an alcoholic product by fermentation is optimized in order to maximise final ethanol concentrations and lactose consumption. The effect of the supplementation of the broth with yeast extract, ammonium sulphate, oxygen, protein, peptides and the vitamins nicotinic acid, biotin, pantothenic acid and inositol on aerobic cell growth was also studied. The Crabt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 130 شماره
صفحات -
تاریخ انتشار 2013